On harmonic quasiconformal mappings
نویسندگان
چکیده
منابع مشابه
On Harmonic Quasiconformal Self-mappings of the Unit Ball
It is proved that any family of harmonic K-quasiconformal mappings {u = P [f ], u(0) = 0} of the unit ball onto itself is a uniformly Lipschitz family providing that f ∈ C. Moreover, the Lipschitz constant tends to 1 as K → 1.
متن کاملQuasiconformal Extension of Harmonic Mappings in the Plane
Let f be a sense-preserving harmonic mapping in the unit disk. We give a sufficient condition in terms of the pre-Schwarzian derivative of f to ensure that it can be extended to a quasiconformal map in the complex plane. Introduction A well-known criterion due to Becker [5] states that if a locally univalent analytic function φ in the unit disk D satisfies (1) sup z∈D ∣∣∣∣φ′′(z) φ′(z) ∣∣∣∣ (1− ...
متن کاملQuasiconformal Mappings in Space
U' denotes the image of U, the disk | s — So| and maps the infinitesimal circles | z — zo\ = e onto infinitesimal ellipses; H(z0) gives the ratio of the major to minor axes and J(zo) is the absolute value of the Jacobian. Suppose next that w(z) is continuously difîerentiable with J(z)>...
متن کاملOn the Area Distortion by Quasiconformal Mappings
We give the sharp constants in the area distortion inequality for quasiconformal mappings in the plane. Astala [1] proved the following theorem conjectured by Gehring and Reich in [3]: Theorem A. Let f be a K-quasiconformal mapping of D = {z: \z\ < 1} onto itself with f(0) = 0. Then for any measurable E c D we have \f(E)\<C(K)\E\xlK, where \ • \ stands for the area. The first author [2] obtaine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Series A I Mathematica
سال: 1969
ISSN: 0066-1953
DOI: 10.5186/aasfm.1969.425